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SUMMARY

One of the important limitations of the interface tracking algorithms is that they can be used only
as long as the local computational grid density allows surface tracking. In a dispersed �ow, where
the dimensions of the particular �uid parts are comparable or smaller than the grid spacing, several
numerical and reconstruction errors become considerable. In this paper the analysis of the interface
tracking errors is performed for the volume-of-�uid method with the least squares volume of �uid
interface reconstruction algorithm. A few simple two-�uid benchmarks are proposed for the investigation
of the interface tracking grid dependence. The expression based on the gradient of the volume fraction
variable is introduced for the estimation of the reconstruction correctness and can be used for the
activation of an adaptive mesh re@nement algorithm. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The interface tracking methods [1] have been widely used for the last 30 years and till now
their numerous successful applications proved them to be a very useful tool for the two-
�uid �ow simulations. Their ability for simulating of the topological changes are usually
demonstrated on a small number of typical two-phase �ow transients, such as the Rayleigh–
Taylor instability [2–8], shape and stability of a rising bubble or falling drop [7; 9–14] just to
mention a few. The incessant improvements of these methods and the continuous development
of the computer hardware enable more and more complex simulations, such as the free surface
motion with automatic mesh generation [15], the 3D simulation of the tens of rising bubbles
[16], the merging and fragmentation of the drops [17], precise calculation of the pinching
pendant drop [18] and many others.

These successful simulations encouraged also some other applications of the interface track-
ing algorithms with more complex patterns of the two-�uid �ow, e.g. the container @lling with

∗Correspondence to: I. Tiselj, Reactor Engineering Division; Jo4zef Stefan Institute; Jamova 39; 1000 Ljubljana;
Slovenia.

†E-mail: iztok.tiselj@ijs.si

Received November 2000
Copyright ? 2002 John Wiley & Sons, Ltd. Revised 14 June 2001



330 G. 4CERNE, S. PETELIN AND I. TISELJ

the viscous liquids [19], the dam break �ow [20], the falling solid in the gas–liquid system
[21], the turbulent mixing of �uids [6], the simulations of some phenomena in the nuclear
plants [22], and others. In these simulations the dispersion of the interface occurs and the
particular �uid is fragmented into the chunks of the size comparable to the grid size. Since it
is obvious that the interface tracking algorithms are limited with the grid size, these examples
give rise to a question: is the result a real physical state or is it deformed by the numerical
error of the interface tracking algorithm.

Among the variety of interface tracking algorithms we focused on the front capturing meth-
ods, more precisely in the volume-of-�uid (VOF) method. The interface reconstruction and
calculation of the �uid’s motion with the VOF method is largely geometric in nature and
it involves some non-physical elements in the simulation. In case the �uid structure is large
compared to the grid size these elements are negligible. However, there are numerous two-
�uid phenomena, where signi@cant topological change of the interface shape occurs (like the
deformation and=or distortion) – in this case the VOF geometrical characteristic might signif-
icantly aLect the result of the simulation. An example is a phenomenon called a ‘numerical
surface tension’, where the VOF reconstruction algorithm numerically disperses and=or merges
the �uid chunks [23]. The simulation on the denser grid can resolve the problem and reduce
the in�uence of the reconstruction incorrectness, however it also increases the computational
time.

The main purpose of this paper is to characterize the errors of VOF interface tracking
algorithm and to estimate the eLect of the grid re@nement. It should be noted that similar
problems and errors might occur also in other interface tracking algorithms like in front
tracking and moving mesh methods. The paper is organized as follows: In Section 2 the main
characteristics of the applied VOF model are pointed out, while the third section describes the
expression for the reconstruction correctness estimation. In the fourth section we analyse the
errors of the VOF interface tracking algorithm and the switch for the grid re@nement during
the simulations. The last section summarises the main conclusions.

2. THE DESCRIPTION OF THE INTERFACE TRACKING IN THE VOF METHOD

The interface tracking in the VOF method is based on the colour function, which marks the
positions of the �uids in the following way [12; 24]

f(x; y)=

{
1 if place (x; y) is occupied by the �uid 1

0 if place (x; y) is occupied by the �uid 2
(1)

The function f is evaluated on the discrete grid as a volume average:

fi; j=
1
Vi; j

∫
Vi; j
f(x; y) dV (2)

where Vi; j is the volume of the cell (i; j). The interface tracking in the VOF method consists
of the interface reconstruction and of the interface advection algorithm.
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2.1. The interface reconstruction algorithm

The interface is reconstructed according to the values of the volume fractions. The algorithm is
not unique; there are several with diLerent accuracies and complexities [23–25]. In the present
work we used the algorithm based on least squares volume-of-�uid interface reconstruction
algorithm (LVIRA) [12; 26] for the reconstruction of the interface. This algorithm makes
a linear approximation of the interface by putting a line segment in each multi-�uid cell,
i.e., in each cell that has 0¡fi; j¡1. The approximate interface orientation in the cell (i; j)
is determined from the volume fractions in the 3× 3 block of the neighbouring cells. The
orientation of each interface segment is determined by the normal vector ñ, which is calculated
using the gradient of the volume fraction

ñ=
∇f
|∇f| =

1
|∇f|




1
3

1∑
k=−1

fi+1; j+k − fi−1; j+k

1
3

1∑
k=−1

fi+k; j+1 − fi+k; j−1


 (3)

To improve the convergence of the reconstruction and to make it of second order [26], the
orientation ñ is corrected by minimization of the function

Gi; j (̃n)=
1∑

l=−1

1∑
k=−1

(fi+k; j+l − f′
i+k; j+l(̃n))

2 (4)

An example of this algorithm is shown in Figure 1 where �uid 1 and �uid 2 are represented
in black and white respectively. The values of fi+k; j+l in Equation (4) are known volume
fractions of �uid 1 in the 3× 3 block of cells. The values of f′

i+k; j+l(̃n) are the volume fractions
provided by line with the normal ñ and extrapolated on the 3× 3 block of cells (dotted line
in Figure 1). The line divides the block on the two parts and the volume fractions f′

i+k; j+l(̃n)
are portions of hatched area in the cells. The line is constructed in a way to conserve the
volume fraction in the centre cell of the block, i.e., fi; j=f′

i; j.

j,y

 n

(i,j-1)

i,x ∆x

∆y

(i-1,j) (i,j)

fluid 1

fluid 2

 

→

Figure 1. Interface reconstruction with the LVIRA algorithm.
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The reconstruction algorithm puts the interface segment between the boundaries of the cell
(i; j) (thick black line in Figure 1).

2.2. The interface advection algorithm

The second step in the interface tracking of the VOF method is the advection algorithm, which
is used for the time evolution of the volume fractions f. The volume fraction f follows the
equation [12; 24]

@f
@t

+∇ · (̃uf)=0 (5)

Equation (5) re�ects the fact that in an incompressible �uid the conservation of mass is
equivalent to the conservation of volume and hence the conservation of f. Among the several
interface advection algorithms [23], we chose an operational split �ux procedure [26]. This
algorithm may not obey mass conservation exactly, however the integral relative mass error
was below ¡10−4 for all the calculations presented in this paper.

The main purpose of the VOF method – of the interface reconstruction and the interface
advection algorithm – is to keep the interface sharp during the simulation and to exclude the
numerical dispersion of the �uids on the interface.

3. THE EXPRESSION FOR THE ‘RECONSTRUCTION CORRECTNESS’

The interface reconstruction and the interface advection algorithms introduce some numerical
errors, which might aLect the physical properties of the simulation. At the simulation of the
general two-�uid �ow it is diQcult to estimate the numerical errors of the VOF algorithm
and their in�uence on the physical phenomena since the correct solution for the comparison
is usually not known. Therefore a numerical expression is needed, which would estimate the
reconstruction correctness from the given (calculated) state. Such expression should be based
on the volume fraction distribution, since it carries the information about the interface shape.
An example of such expression, which is used in the present work, is based on the gradient
of volume fraction ∇f

�i; j=

√√√√(1
3

1∑
k=−1

fi+1; j+k − fi−1; j+k

)2
+

(
1
3

1∑
k=−1

fi+k; j+1 − fi+k; j−1

)2
(6)

The calculation domain of Equation (6) is a 3× 3 block of cells. It is used owing to the
simple reason – the same area is used for the determination of the interface segment (3) and
(4). Before Equation (6) is used for the estimation of the reconstruction correctness its main
characteristics have to be analysed. The characteristics like the minimum and the maximum
value give some important information about the behaviour of Equation (6). The maximum
value of � can be determined with a short calculation [27] giving �max =

√
1 + 1=9≈ 1:05. The

corresponding state is presented in Figure 2(a).
Equation (6) has the minimum equal to zero in case of homogeneously dispersed �uids

f(x; y)=const (Figure 2(b)), where the gradient of volume fraction is zero. The value of the
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f=1 f=1 f=1

f=1
n
→ 

(i,j)

f=0

f=0 f=0 f=0

(a)

(i,j)

f=0.1

f=0.1

f=0.1 f=0.1

f=0.1 f=0.1

f=0.1f=0.1 f=0.1

(b)

Figure 2. (a) The maximal value of �; (b) the minimal values of �.

parameter � is thus close to zero for the dispersed �uids-state where the interface cannot be
constructed, and is approaching �≈ 1 for clearly separated �uids.

The usage of Equation (6) for reconstruction correctness is not as simple as shown by its
maximum and minimum. The only two-�uid state, where the interface is reconstructed on the
discrete grid without error are two �uids separated with the linear interface (Figure 3(a)). In
that case the values of the reconstruction correctness � Equation (6) slightly depends on fi; j
and relative orientation of the interface to the grid cells (tg� in Figure 3(b)). This dependence
is shown in Figure 3(b). The reconstruction correctness � for the linear interface is between
0:71.�.1:03. Of course, an ideal parameter for measuring the dispersion should have a con-
stant value for all positions of the linear interface, however, it is probably impossible to be
constructed.
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Figure 3. (a) Reconstruction of the linear interface; (b) characteristic of the reconstruction
correctness function � for linear interface.

To reduce the deviation, the reconstruction correctness � has to be averaged over several
cells with the interface. Since the length of the reconstructed interface segment in the cell is
not constant (it varies from zero to h · 21=2 where h is the grid size), the averaging should be
weighted by the length of the line segments:

S�=

∑
i; j �i; jli; j∑
i; j li; j

(7)

Here li; j is the length of the interface segment in the cell (i; j). The summation runs over the
mixed cells of the desired area: that is a particular �uid chunk, a part of the interface, or a
@xed frame of the cells. The achieved deviation reduction is examined by the calculation of
reconstruction correctness S� on states with its maximal values – �uids separated by the linear
interface. The numerical calculation shows that this result varies from S�=1:0 at tg�=0 to
S�∼=0:93 at tg�=1. The overall average of all possible states with the linear interface gives
S�∼=0:97.
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Figure 4. (a) Position of a circular bubble on a grid; (b) reconstruction correctness as a
function of the bubble size to grid space ratio.

The proposed reduction of the deviation, Equation (7), is suitable only for the 2D piecewise
linear reconstruction, where the length of the reconstructed interface is known. In 3D the area
of the reconstructed �at surface piece in the cube cell might be used instead, but its calculation
is quite complicated in speci@c situations. Such a parameter for the reconstruction correctness,
which is based on the interface length, also cannot be used in the piecewise constant scheme
[28] or stair-step [24] scheme. Other types of averaging should be provided in such cases. The
weighted factor should be a function of the gradient ∇f direction and the volume fraction f
and having similar characteristic as the length l of the corresponding linear segment.

The application of the reconstruction correctness parameter is simple: if the interface of the
speci@c chunk has the reconstruction correctness close to 1.0, a very small error in the simu-
lation is given by the reconstruction algorithm. Smaller value suggests less reliable simulation
by the VOF interface tracking algorithm.
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Since the numerical error is larger when smaller chunks are simulated, the reconstruction
correctness should have a monotonous dependence on the characteristic chunk size. In order
to show this characteristic one of the most common topological shapes in the two-phase �ow
was used: a bubble. Figure 4(a) shows a circular bubble with the diameter d on a mesh
with the grid spacing h. The averaging of the reconstruction correctness S� is calculated over
the whole chunk – in the case shown in Figure 4(a) averaging includes the hatched cells.
Parameter S� as a function of the bubble size (d=h ratio) is shown in Figure 4(b). Larger
d=h ratio means more grid cells per bubble and results in larger values of S�. Figure 4(b)
shows rapid decrease of S� values for diameters d less then approximately 3h. This result is
in agreement with the fact, that at least three grid cells per bubble diameter are needed to
capture its circular shape with some minimal accuracy, and therefore justi@es the choice of S�
as a measure of the interface reconstruction correctness.

4. NUMERICAL EXAMPLES

4.1. The error of the interface reconstruction

The interface reconstruction algorithm causes some error by imitating the curved interface
with the line segment. The computed errors are estimated with the L1 norm de@ned as

�=

∑
grid |fcalculated

i; j − fexact
i; j |∑

grid f
exact
i; j

(8)

The test example for estimating the reconstruction error is a circular 2D bubble. fexact is a
volume fraction of the circle calculated on the in@nity dense mesh and fcalculated is a volume
fraction calculated on some realistic grid. The calculation showed that the L1 norm (Equation
(8)) is calculated within 10 per cent error if fexact is calculated on 16 times denser grid as
fcalculated. The error (Equation (8)) is smaller when the radius of the curvature is larger. In
Figure 5 and Table I we show the reconstruction error (Equation (8)) as a function of the

Figure 5. Error of the reconstruction algorithm as a function of the bubble diameter to grid space ratio.
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Table I. Reconstruction error of the interface tracking method at diLerent bubble size.

d=h 5 10 20 40 80

error � 3:8×10−2 5:0×10−3 1:1×10−3 2:3×10−4 4:7×10−5

circle diameter to the grid spacing ratio (d=h). According to these results the relative mass
error due to the reconstruction algorithm is less than 10 per cent for the convex chunks with
the characteristic size around d¿3h.

4.2. The error of the interface advection

The advection error occurs when the �uid chunk moves across the mesh. Figure 6(a) shows
a part of the two-�uid state in the two neighbouring cells at the time t. The hatched area is
the volume of the speci@ed �uid, which will cross the cell boundary in the next time step
t + Tt. Figure 6(b) shows the state at time t + Tt after the advection part of the time step,
which preserves the shape of the interface. But in the simulation between the two time steps
the LVIRA algorithm reconstructs the interface and changes the interface shape. Figure 6(c)
shows the state at the end of the time step when the interface reconstruction substep is
@nished. The diLerence of the interface shape between the states in Figure 6(b) and the 6(c)
causes the diLerence of the transferred �uid across the cell boundary and volume fractions in
the cells at time t + 2Tt (S1 �= S2) – so-called advection error.

Figure 7(a) shows the initial state, which consists of several bubbles with diLerent d=h
ratios. They are put in the constant velocity @eld v(x; y; t)= const. The bubbles and �uid
around them have the same density and move together as @xed, therefore theoretically the
shape of the interface should not change during the transient. Figure 7(b) shows their shape
and positions after the time t=50h=v, where v is the prescribed velocity. The eLect of the
advection error is the deformation of the bubble shape. If the original shape is circular it
becomes thicker at the front side after some time. In the case when the chunks are very small

u

(i,j)

(i,j)

u1

(i,j)

S1 S2

t

t+ t t+∆t after reconstruction

(a)

∆

(b) (c)

Figure 6. Error of the advection algorithm: (a) the state at time t; (b) the state of the interface at t+Tt
after the advection substep; (c) the state at t + Tt after the advection and reconstruction substep.
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Figure 7. (a) Bubbles in the �ow with constant velocity – initial state; (b) bubbles in the �ow with
constant velocity – state after time t=50h=v.

(characteristic size d¡2h), they move faster than the �ow @eld: vchunk¿v. Figure 8(a) shows
the dependence of the chunk velocity on the circle size d=h. The advection error is calculated
similar to Equation (8):

�=

∑
grid |ft=Ti; j − ft=0

i; j |∑
grid f

t=0
i; j

(9)

where ft=0 is the volume fraction of the initial state and ft=T is the volume fraction of the
@nal state at T =50h=v. The result in Figure 8(b) shows the advection error � (Equation (9))
as a function of the characteristic chunk size. The relative volume deformation due to the
advection error is below 10 per cent for the chunks with the characteristic sizes around
d¿3:5h.

4.3. The numerical dispersion

The numerical dispersion occurs when single �uid chunk is reconstructed as several separated
pieces due to the numerical errors. One of the simplest cases for the analysis of the numerical
dispersion is the deformation of the interface in the shear �ow. The velocity @eld is given by
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Figure 8. (a) Chunk velocity as a function of the bubble diameter grid space ratio; (b) advection error
as a function of the bubble diameter to grid space ratio.

the stream function

U=− 1
2y

2 (10)

where the components of the velocity @eld in the x and y direction are calculated as u=
− @U=@y and v= @U=@x, respectively.

The initial state of the simulation is a vertical strip – perpendicular to the velocity – with the
width d as shown in Figure 9. The applied shear �ow stretches the structure to the in@nite
length, but theoretically it stays continuous. On the other side the numerical simulation is
limited by the grid density, which causes the numerical error in the interface reconstruction.
Figure 10(a) and (b) shows the state before and after the numerical dispersion occurs. To
reduce the computational domain the left and the right boundaries are periodical.

The reconstruction of the linear interface with the VOF method is always correct, which
is also valid in the idealized shear �ow – no reconstruction and advection errors occur. The
numerical dispersion occurs when the thickness of the strip is close to the grid size. In that
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u

d

Figure 9. Initial state of the shear �ow test.

case the gradient of the volume fraction (Equation (3)) does not coincide with the interface
normal of the original state and the reconstructed line segment has a wrong orientation. That
is seen in Figure 11, where particular line segments are not parallel any more. DiLerent
inclination enables the advection error described in Section 4.2 to spoil the result. Parts of
the �uid in the mixed cells move faster than the prescribed velocity, and other parts slower.
That forms the �uid chunks, which are stable despite the fact that the velocity is not constant
across their cross-section. The dotted square in Figure 11 bounds the area, where the numerical
chunk is going to form.

The VOF method prevents the dispersion of �uids over the whole area. Instead, it creates a
layer of cells where the volume fraction is changing from 1 to 0. The interface reconstruction
and interface advection algorithms keep the parts of �uid in the neighbouring cells together.
That results in the chunks having characteristic thickness h¡d¡3h.

The development of the numerical dispersion can be analysed also using the reconstruction
correctness parameter S� (Equation (6)) calculated for the whole stripe. Its time history is
presented in Figure 12. The reconstruction correctness achieves its minimum value when the
numerical dispersion occurs (state presented in Figure 10(a)). Later, when the �uid chunks
are formed as shown in Figure 10(b), it has approximately constant value, which corresponds
to the characteristic size of the �uid chunks.

4.4. The vortical .ow

For the overall estimation of the VOF numerical errors, a test problem with the topological
changes of the interface is needed. A simple 2D test problem, which is also easy to implement,
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Figure 10. (a) A vertical stripe deformed by the shear �ow before numerical dispersion; (b) a vertical
stripe deformed by the shear �ow after numerical dispersion.

is vortical �ow proposed by Rider and Kothe [23]. Such a test is representative of the inter-
facial �ow in the real physical system like the Rayleigh–Taylor instability where the sharp
gradients in the �uid properties lead the transient mechanisms. This test was used in Ref-
erences [23] and [29] for estimating the accuracy of the particular reconstruction algorithms
and for the comparison with other reconstructing algorithms. In our case the study is fo-
cused on the analysis of the numerical error accumulation and its reduction with the grid
re@nement.
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Figure 11. Initiation of the numerical dispersion.
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Figure 12. Time history of the reconstruction correctness for the numerical dispersion.

The test uses a @xed velocity @eld de@ned by the stream function:

U=
1
�

sin2(�x) sin2(�y) cos
(
�
t
T

)
(11)

The initial state is a circle with the radius r=0:15, which centre is located in the point
S(0:5; 0:8) (Figure 13(a)). The vortical velocity de@ned by Equation (11), which is divergence
free, deforms the circle into the spiral as shown in Figure 13(b) for the state at t=10 and
with T=50.
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Figure 13. (a) Initial state of the vortex �ow; (b) state at t=10 and T=50.

Theoretically, the �uid structure during the rotation makes a thin stripe and stays continuous
even in the case of an in@nite whirling T , t→∞. During the simulation when the thickness of
the �uid is close to the grid size the numerical dispersion occurs (Figure 14). The numerical
dispersion is a typical grid dependent phenomenon – a denser grid results in larger number
of the dispersed chunks.

After some time at t=T=2 the velocity @eld changes its sign and the �uids are returning back
to the initial state at time t=T – but only theoretically. In the simulation the reconstruction
and the advection algorithm produce the numerical error, which spoils the result as shown
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Figure 14. Numeral dispersion on a 30×30 grid.

in Figure 15(a) and (b) for two diLerent grid densities. The integral numerical error of the
VOF interface tracking algorithm for the transient is calculated with Equation (9) where ft=T

and ft=0 are the volume fractions of the @nal and initial state respectively. Figure 16 shows
the dependence of the error on the simulation time T . The error � (Equation (9)) is growing
approximately linearly for the times T¡5 (vertical dotted line). For the longer transients the
error is growing even more rapidly because of the numerical dispersion occurrence.

There are several ways to avoid the numerical interface dispersion, which might have a
signi@cant in�uence on the physical interpretation of the simulation. One way is using a
diLerent model, which does not depend so much on the grid density. Such an approach, when
the VOF model is replaced by the ‘two-�uid’ model in the moment when the error VOF
interface tracking algorithm is apparent, is described in References [8; 30; 31]. The ‘two-
�uid’ model is derived by averaging of the basic equations and therefore it is less accurate
than the VOF model, but it is capable to give the basic physical picture also on a coarser
grid, where the VOF model is defected by numerical errors. Another solution is use of the
@ner grid, which keeps the accuracy of the VOF interface tracking algorithm. That is seen in
Table II, which shows the error � for vortical �ow test at T=6 on several grid densities. On
the denser grid the error is considerably lower.

The bad side of the calculation on the @ner grid is the increase of the computational time
and corresponding memory usage. The compromise is to keep the coarse grid as long as the
accuracy is still satisfactory and, when not, replace it with @ner mesh. This approach is a
type of adaptive mesh re@nement (AMR). Such a technique has already been used for several
times as local AMR in �uid �ow simulation [32], or in the interface tracking methods like
adhesion of biological cells with the front tracking method [33], the rising bubble with Level
set method [34] and adaptive front tracking [35]. In our case a very simple technique of mesh
re@nement is used. In a moment the state of the whole calculation area is transferred to the
double grid density or vice versa. At that moment the velocity @eld is recalculated according
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Figure 15. (a) Final state t=T for T=6 on 30×30 grid; (b) @nal state t=T for T=6 on 60×60 grid.

to Equation (11) and the volume fractions are transformed geometrically as shown in the
Figure 17.

Figure 18(a) shows the error � as a function of time tswitch when the simulation of the
swirling �ow is switched from 30×30 to the double density 60×60 for the constant T=6.
The nodalization is switched back to the coarse grid at time T − tswitch. The coarse grid does
not contribute much to the error at the beginning of the simulation. The simulation, where the
switch to double density grid occurs at tswitch¡1, has almost the same integral error as in the
case when the whole calculation is done on the @ner grid. The integral error � is signi@cantly
larger if the switch occurs close to or after the numerical dispersion starts (dotted line in
Figure 18(a)).
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Figure 16. Integral error for the vortical �ow on 60×60 grid.

Table II. The grid dependence of the VOF interface tracking error at the vortex �ow test.

mesh 15×15 30×30 60×60 120×120

error � 1.78 0.85 0.098 0.0198

f=1f=0.9

f=0.2 f=0.7

f=0.7 ⇔

Figure 17. Transformation of the volume fraction to denser=coarser grid.

The grid re@nement is more eQcient if it is applied before the numerical dispersion occurs.
For the estimation when to re@ne the grid, the reconstruction correctness parameter S� for
the whole �uid chunk is calculated. Finer grid is applied in the moment when S�6S�switch. In
Section 4.3 it is shown that the reconstruction correctness S� has the minimum value in the
moment just before the numerical dispersion occurs. Therefore one can avoid such dispersion
by putting S�switch equal to or larger than that minimal value S�switch¿S�min. On the contrary, if
S�switch¡S�min the grid re@nement has no eLect since it never switches on.

The real AMR needs a local criteria for the switch to the double grid density. In general
the grid re@nement is also more eLective when it is carried on locally – on the sub-domain
where the local reconstruction correctness is too small. It saves more calculation time and
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Figure 18. (a) Integral error when the switch to double grid density depends on time; (b) integral error
when the switch to double grid density depends on S�.

does not re@ne the mesh on the place where it is unnecessary. The most suitable way for
the calculation of the S� is the @xed frame of cells, the size of which would be at least a
block of 3×3 cells. In our case this is unnecessary, since in the vortical �ow the numerical
dispersion occurs in a relatively short time interval and the grid re@nement is needed on the
whole domain. Such simpli@cation saved a lot of programming work and the quality of the
grid re@nement analysis reminded the same.

Figure 18(b) shows the integral error � of the VOF interface tracking algorithm, where
the switch to double density depends on the S�switch parameter. The initial grid density is
30×30. The error is lowered, when the switch to the double density occurs S�switch¿0:58 (the
left dotted line in Figure 18(b)). That is the minimal value of the reconstruction correctness,
which occurs during this problem. The result in Figure 18(b) shows that the appropriate value
for the switch parameter is S�¿0:75. This value keeps the error close to the case simulated
exclusively with the double density 60×60 (see Table II). The right dotted line in Figure 18(b)
shows the switch to the @nest 120×120 grid, which occurs for the S�switch¿0:75 in the present
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Figure 19. Final state t=T for T=6 on 30×30 grid with switch �switch =0:8.

case. The reduction of the error can be noted also in Figure 19, which shows the result at
t=T for T=6 for the simulation on initial grid 30×30 and switch S�switch=0:8. This result is
much closer to the initial state in Figure 13(a) than the result on pure 30×30 grid in Figure
15(a) and even closer than the result on pure 60×60 grid in Figure 15(b).

Larger value of S�switch switches to the double density earlier and makes the integral error
� smaller, however S�switch¿0:9 does not have a signi@cant eLect on it. On the other hand
it signi@cantly increases the computational time, since a very dense nodalization is needed
to keep the reconstruction correctness so high. The value S�switch depends on the need for the
accuracy and the calculation time but according to our experience the proposed value should
be chosen from the interval 0:75¡S�switch¡0:9.

5. CONCLUSIONS

The simulations with the volume-of �uid model might give some grid-dependent results, which
are caused by the errors of the reconstruction and the advection algorithms. Such errors, which
might signi@cantly aLect the description of the physical phenomena, cannot be avoided by
applying better and more accurate front capturing algorithms. The source of this error is the
limitation of the grid cell – the VOF model cannot simulate the �uid chunks, which are
smaller than the grid cell.

The easiest way for the detection of the numerical error of the VOF model and estimating
its in�uence on the simulation is the comparison to the correct solution. However, that is not
possible for the general simulation. The error of the interface tracking is closely connected to
the characteristic size of the simulated �uid chunk or the interface part. Therefore a mathe-
matical function is proposed, which has a monotonous dependence on the characteristic size
of the �uid chunk, and can serve for the estimation of the numerical error. The gradient of
the volume fraction is a kind of the function, which value corresponds to the characteristic
size of the �uid chunk and is suitable for the estimation of the VOF interface tracking error.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:329–350



ERRORS OF THE VOF ALGORITHM 349

One possibility for the reduction of the numerical error is the adaptive grid re@nement of
the mesh during the simulation. The reconstruction correctness function can tell whether the
error of the VOF interface tracking algorithm is within the desired accuracy and the coarse
grid should be kept, or the denser grid is to be applied.

The test problem with the prescribed velocity proposed in Reference [23] appeared to be
very eQcient for the study of the reconstruction correctness and evolution of numerical errors
on the diLerent grid densities. The study in this paper was performed with the VOF method
and the LVIRA piecewise linear reconstruction algorithm, however the results can be applied
also for the other VOF reconstruction algorithms.
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